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Abstract
The status of the usual statement of the Fradkin–Vilkovisky theorem, claiming
complete independence of the Batalin–Fradkin–Vilkovisky path integral on
the gauge fixing ‘fermion’ even within a nonperturbative context, is critically
reassessed. Basic, but subtle reasons why this statement cannot apply as such in
a nonperturbative quantization of gauge invariant theories are clearly identified.
A criterion for admissibility within a general class of gauge fixing conditions is
provided for a large ensemble of simple gauge invariant systems. This criterion
confirms the conclusions of previous counter-examples to the usual statement
of the Fradkin–Vilkovisky theorem.

PACS numbers: 03.65.−w, 11.15.−q

1. Introduction

Among available approaches towards the quantization of locally gauge invariant systems,
the general BRST (Becchi–Rouet–Stora–Tyutin) quantization methods are certainly the most
popular and widely used. Within the BRST-BFV Hamiltonian setting [1], one result stands
out as being most relevant, namely the so-called Fradkin–Vilkovisky (FV) theorem according
to which, in its statement as usually given [1, 2], the BRST invariant BFV path integral
(BFV-PI) representation of transition amplitudes is totally independent of the choice of gauge
fixing conditions, the latter thus being made to one’s best convenience. However in this form,
such a claim has been disputed on different grounds [3–7], while general classes of explicit
counter-examples have been presented [3–5, 8] within simple gauge invariant systems.

Indeed, all these examples agree with the following facts, which are to be considered as
defining the actual content of the FV theorem [3, 5]. Given the gauge invariance properties
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built into the formalism, the BFV-PI is, by construction, manifestly BRST and gauge invariant.
Consequently, whatever the choice of gauge fixing conditions being implemented, the BFV-PI
always reduces to some integral over the space of gauge orbits of the original gauge invariant
system. In particular, any two sets of gauge fixing conditions which are gauge transforms
of one another lead to the same final result for the BFV-PI. Nevertheless, which ‘covering’
(an integration domain with some measure) of the space of gauge orbits is thereby selected,
depends directly on the gauge equivalence class of gauge fixing conditions to which the specific
choice of gauge fixing functions belongs. In other words, the BFV-PI depends on the choice
of gauge fixing conditions only through the gauge equivalence class to which these conditions
belong. Nonetheless, the BFV-PI cannot be totally independent of the choice of gauge fixing
conditions. Gauge invariance of the BFV-PI is a necessary condition, but it is not a sufficient
one for a choice of gauge fixing conditions to be admissible. Indeed, an admissible gauge
fixing is one whose gauge equivalence class defines a single covering of the space of gauge
orbits, namely such that each of these orbits are included with equal nonvanishing weight in
the final integration. Nonadmissibility, namely a Gribov problem [9], arises whenever either
some orbits are counted with a smaller or larger weight than others (Gribov problem of type I),
or when some orbits are not included at all (Gribov problem of type II), or both [5]. Since
the identification of a general criterion to characterize admissibility of arbitrary gauge fixing
conditions appears to be difficult at least [6, 7], this issue is best addressed on a case-by-case
basis.

Notwithstanding the explicit examples confirming the more precise statement of the FV
theorem as just described, the arguments purporting to establish complete independence of
the BFV-PI on the choice of gauge fixing seem to be so general and transparent, being based
on the nilpotency of the BRST charge and BRST invariance of the external states for which
the BFV-PI is computed, that the usual FV theorem statement is most often just simply taken
for granted and to be perfectly undisputable. Confronted with this contradictory situation, it
is justified to reconsider the status of the FV theorem and identify the subtle reasons why the
formal arguments do not apply as usually described. This is the purpose of the present paper,
at least within a general class of simple constrained systems to be described in section 2.1.

One should point out in this context that there is no reason to question the validity of the
usual statement of the FV theorem within the restricted context of ordinary perturbation theory
for Yang–Mills theories. Indeed, there exists explicit and independent proof of this fact [10].
Furthermore, perturbation theory amounts to considering a set of gauge orbits in the immediate
vicinity of the gauge orbit belonging to the trivial gauge configuration. However, Gribov
problems and nonperturbative gauge fixing issues involve the larger topological properties of
the space of gauge orbits [11], and it is within this context that the relevance of the FV theorem
is addressed in the present paper. There is no doubt that in the case of Yang–Mills theories, for
example, such issues must play a vital role when it comes to the nonperturbative topological
features of strongly interacting nonlinear dynamics.

The outline of this paper is follows. After having described in section 2 the general class of
gauge invariant systems to be considered, including their quantization within Dirac’s approach
which is free of any gauge fixing procedure, section 3 addresses their BRST quantization.
Based on the usual plane wave representation of the Lagrange multiplier sector of the extended
phase space within that context, the actual content of the FV theorem is critically reassessed
within a general class of gauge fixing conditions, while subtle aspects explaining why its usual
statement fails to apply are pointed out. Then in section 4, a regularization procedure for the
Lagrange multiplier sector is considered, which avoids the use of the non-normalizable plane
wave states, by compactifying that degree of freedom into a circle. A general admissibility
criterion for the classes of gauge fixing conditions considered is then identified, while further
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subtle reasons explaining why the usual statement of the FV theorem fails also in that context
are again pointed out. No inconsistencies between the two considered approaches arise,
confirming the actual and precise content of the Fradkin–Vilkovisky theorem as given above.
Concluding remarks are presented in section 5.

2. A simple general class of models

2.1. Classical formulation

Let us consider a system whose configuration space is spanned by a set of bosonic coordinates
qn, with canonically conjugate momenta denoted pn, thus with the canonical brackets
{qn, pm} = δn

m. These phase space degrees of freedom are subjected to a single first-class
constraint φ(qn, pn) = 0, which defines a local gauge invariance for such a system. Finally,
dynamics is generated from a first-class Hamiltonian H(qn, pn), which we shall assume to
have a vanishing bracket with the constraint φ, {H,φ} = 0. Given that large classes of
examples fall within such a description, the latter condition is only a mild restriction, which is
made to ease some of the explicit evaluations to be discussed hereafter.

A well-known [5] system meeting all the above requirements is that of the relativistic scalar
particle, in which case the first-class constraint φ defines both the local generator for worldline
diffeomorphisms as well as the mass-shell condition for the particle energy–momentum. Other
examples in which the first-class constraint is the generator of a local internal U(1) gauge
invariance may easily be imagined, such as those discussed in [8, 12]. In the latter reference,
for instance, one has a collection of degrees of freedom qa

i (t) (a = 1, 2; i = 1, 2, . . . , d) with
Lagrange function

L = 1
2

[
q̇a

i − λεabqb
i

]2 − 1
2ω2qa

i qa
i εab = −εba. (1)

This system may be interpreted as that of d spherical harmonic oscillators in a plane subjected
to the constraint that their total angular momentum vanishes at all times,

φ = εabpa
i q

b
i = 0 pa

i = q̇a
i − λεabqb

i . (2)

The U(1) gauge invariance of the system is that of arbitrary time-dependent rotations in
the plane acting identically on all oscillators, with λ(t) being both the associated Lagrange
multiplier and U(1) gauge degree of freedom (the time component of the gauge ‘field’).

Returning to the general setting, all the above characteristics may be condensed into
one single information, namely the first-order Hamiltonian action principle over phase space
expressed as

S[qn, pn; λ] =
∫

dt[q̇npn − H − λφ] (3)

where λ(t) is an arbitrary Lagrange multiplier associated with the first-class constraint
φ(qn, pn) = 0. The Hamiltonian equations of motion are generated from the total Hamiltonian
HT = H + λφ, in which the Lagrange multiplier parametrizes the freedom associated with
small gauge transformations throughout time evolution of the system. These small gauge
transformations are generated by the first-class constraint φ(qn, pn).

Indeed, in their infinitesimal form, small gauge transformations are generated by the
first-class constraint as

δεq
n = ε{qn, φ} δεpn = ε{pn, φ} δελ = ε̇ (4)

ε(t) being an arbitrary function of time (the above action then changes only by a total time
derivative). Related to this simple character of gauge transformations, it is readily established
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[3, 5] that, given a choice of boundary conditions (b.c.) for which the coordinates qn(t) are
specified at the boundary of some time interval [ti , tf ](ti < tf ), which then also requires
that the gauge transformation function obeys the b.c. ε(ti,f ) = 0, the space of gauge orbits is
in one-to-one correspondence with Teichmüller space, i.e. the space of gauge orbits for the
Lagrange multiplier λ(t). In the present instance, this Teichmüller space reduces to the real
line spanned by the gauge invariant modular or Teichmüller parameter

γ =
∫ tf

ti

dt λ(t). (5)

Consequently, any admissible gauge fixing of the system is thus to induce a covering of
this modular space in which each of all the possible real values for γ is accounted for with
an equal weight. Indeed, any real value for γ characterizes in a unique manner a possible
gauge orbit of the system, while on the other hand any configuration of the system belongs
to a given gauge orbit. Thus, in order to account for all possible physically distinct gauge
invariant configurations of the system, all possible values for the single coordinate parameter
γ on modular space must be accounted for in any given admissible gauge fixing procedure
(absence of a Gribov problem of type I), while at the same time none of these orbits may be
included with a weight that differs from that of any of the other gauge orbits (absence of a
Gribov problem of type II). An admissible gauge fixing procedure must induce a covering of
modular space which includes all real values for γ with a γ -independent integration measure
over modular space.

2.2. Quantum formulation

As the above notation makes already implicit, in order to avoid any ambiguity in the
forthcoming discussion, the configuration space manifold is assumed to be of countable
discrete dimension, if not simply finite. Furthermore at the quantum level, we shall also
assume that the associated Hilbert space of quantum states itself is spanned by a discrete basis
of states. Depending on the system, this may require to compactify configuration space, such
as for instance into a torus topology, or introduce some further interaction potential, such as
a harmonic well, it being understood that such regularization procedures may be removed at
the very end of the analysis. In this manner, typical problems associated with plane wave
representations of the Heisenberg algebra, [q̂n, p̂m] = ih̄δn

m with q̂n† = q̂n and p̂
†
n = p̂n, are

avoided from the outset. As a matter of fact, a torus regularization procedure will be applied
to the Lagrange multiplier sector when considering BRST quantization at some later stage of
our discussion.

Furthermore, for ease of expression hereafter, we shall assume to be working on a basis
of Hilbert space which diagonalizes the first-class constraint operator φ̂,

φ̂|k〉 = φk|k〉 (6)

with in particular the integers k0 denoting the subset of these states which are associated with
a vanishing eigenvalue for the constraint with an unspecified degeneracy,

φ̂|k0〉 = 0 φk0 = 0. (7)

The latter states |k0〉 for all the possible values k0 thus define a basis for the subspace of gauge
invariant or physical states, which are to be annihilated by the constraint.

The examples mentioned in (1) provide explicit illustrations of such a general setting.
The spectra of both the Hamiltonian and constraint eigenstates are discrete, with specific
degeneracies for each class, including the physical sector of gauge invariant states. In the case
of the relativistic scalar particle, the same situation arises provided one introduces a regulating
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harmonic potential term quadratic in the spacetime coordinates in order to render the spectrum
discrete. Even for a system as simple as a topological particle on a circle, for which the
Lagrange function is given by L = Nq̇, where N is some normalization factor that needs to
take on a quantized value at the quantum level, the momentum constraint operator, φ̂ = p̂−N ,
then also possesses a discrete spectrum, and thus falls within the general setting of systems
addressed in our discussion (in this case, the first-class Hamiltonian vanishes identically, while
the gauge invariance associated with the first-class constraint is that of arbitrary coordinate
redefinitions of the degree of freedom q(t)).

Given an arbitrary choice for the Lagrange multiplier λ(t), and since it is also assumed that
quantization preserves the gauge invariance property of the first-class Hamiltonian Ĥ (namely
that even at the quantum level we still have the vanishing commutator [Ĥ , φ̂] = 0, which
also implies that the time-ordered exponential of the total Hamiltonian, ĤT (t) = Ĥ + λ(t)φ̂,
coincides with its ordinary exponential), time evolution of the quantum system is generated
by the operator

Û (tf , ti) = exp

(
− i

h̄

∫ tf

ti

dt[Ĥ + λ(t)φ̂]

)
(8)

which propagates both gauge variant and invariant states. Propagation of physical states only
is achieved by introducing the physical projection operator [13] EI , obtained essentially by
integrating over the gauge group of all finite small gauge transformations e−i/h̄γ φ̂ , which in
the present case may be expressed as

EI = lim
γ0→∞

∫ γ0

−γ0

dγ

2γ0
exp

(
− i

h̄
γ φ̂

)
=

∑
k0

|k0〉〈k0| EI 2 = EI EI † = EI. (9)

Consequently, the physical evolution operator is given by Û phys(tf , ti) = Û (tf , ti)EI =
EIÛ(tf , ti)EI , for which all matrix elements in the basis |k〉 vanish, except on the physical
subspace spanned by the states |k0〉,
• if ki �= k0 or kf �= k0 : 〈kf |Û phys(tf , ti)|ki〉 = 0

• if ki = k0,i and kf = k0,f : 〈k0,f |Û phys(tf , ti)|k0,i〉 = 〈k0,f | exp
(
− i

h̄
�tĤ

)
|k0,i〉

�t = tf − ti .

(10)

The latter are thus the matrix elements that the BFV-PI must reproduce from BRST quantization
given any admissible gauge fixing choice.

Note that one may also write,

Û phys(tf , ti) = lim
γ0→∞

∫ γ0

−γ0

dγ

2γ0
exp

(
− i

h̄
[�tĤ + γ φ̂]

)

= exp
(
− i

h̄
�tĤ

)
lim

γ0→∞

∫ γ0

−γ0

dγ

2γ0
exp

(
− i

h̄
γ φ̂

)
(11)

which clearly reproduces the above matrix elements, and makes it explicit that one indeed has
performed an admissible integration over the modular space of the system parametrized by
−∞ < γ < +∞ with a uniform integration measure [14], precisely a covering of modular
space which is characteristic of an admissible gauge fixing choice.

3. BFV-BRST formulation

3.1. BFV extended phase space

Within the BFV approach [1, 2, 5], phase space is first extended by introducing a momentum
π(t) canonically conjugate to the Lagrange multiplier λ(t), {λ(t), π(t)} = 1. Consequently,
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one then has the set of first-class constraints Ga = (G1,G2) = (π, φ) = 0, a = 1, 2, such
that {H,Ga} = 0. To compensate for these additional dynamical degrees of freedom, a further
system of pairs of Grassmann odd canonically conjugate ghost degrees of freedom, ηa(t) and
Pa(t) with ηa† = ηa,P†

a = −Pa and {ηa,Pb} = −δa
b , is introduced. By convention, ηa (resp.

Pa) are of ghost number +1 (resp. −1). The ghost number is given by Qg = Paη
a .

Within this setting, small local gauge transformations are traded for global BRST
transformations, generated by the BRST charge QB , which in the present situation is simply
given by

QB = ηaGa = η1π + η2φ (12)

a Grassmann odd quantity, real under complex conjugation and of ghost number (+1),
characterized by its nilpotency property, {QB,QB} = 0.

BRST invariant dynamics on this extended phase space is generated by the general BRST
invariant Hamiltonian

Heff = H − {
,QB} (13)


 being an a priori arbitrary Grassmann odd function of extended phase space, pure imaginary
under complex conjugation and of ghost number (−1), known as the ‘gauge fixing fermion’
as this is indeed the role it takes within this formalism.

In order to obtain a BRST invariant dynamics, the equations of motion generated from
Heff must be supplemented with BRST invariant boundary conditions. Considering BRST
transformations,

δBqn = {qn,QB} = η2{qn, φ} δBλ = η1 δBη1 = 0 δBη2 = 0 (14)

δBpn = {pn,QB} = η2{pn, φ} δBπ = 0 δBP1 = −π δBP2 = −φ (15)

it appears that a choice of b.c. which is universally BRST invariant is such that

π(ti,f ) = 0 P1(ti,f ) = 0 η2(ti,f ) = 0 (16)

while the b.c. in the original ‘matter’ sector (qn, pn) are those already mentioned in the
discussion of section 2.1. Note that since QB(ti,f ) = 0 as well as Qg(ti,f ) = 0, while
Q̇B = {QB,Heff} = 0 and Q̇g = {Qg,Heff} = 0 on account of the BRST invariance and
vanishing ghost number of Heff , these b.c. imply that any solution is indeed BRST invariant
and of vanishing ghost number, QB(t) = 0 and Qg(t) = 0. These are precisely the b.c. that
are imposed on the construction of the BFV-PI for the BRST invariant quantized system.

Obviously, a condition which the gauge fixing function 
 must meet is that, given the
above b.c., the set of solutions to the equations of motion generated by the corresponding
Hamiltonian Heff coincides exactly with the set of solutions obtained in the initial formulation
of section 2.1. This requirement restricts already on the classical level the classes of gauge
fixing functions 
 that may be considered. Even the classical BRST invariant dynamics is not
entirely independent of the choice of 
 [5], a point we shall not pursue further here (having
already been discussed to some extent in [5] through detailed examples), but which indicates
that it cannot be so either at the quantum level.

A general class of functions that is to be used explicitly hereafter within the quantized
system is of the form


 = P1F(λ) + βP2λ (17)

where F(λ) being an arbitrary real function and β an arbitrary real parameter. It may readily
be established that associated with this choice, the classical Hamiltonian equation of motion
for λ(t) amounts to the gauge fixing condition

dλ(t)

dt
= F(λ). (18)
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In terms of some integration constant λ0, the solution λ(t; λ0) defines a value γ (λ0) for the
Teichmüller parameter. Given a choice for F(λ), as the value λ0 varies over its domain
of definition, γ (λ0) varies over a certain domain in modular space with a specific-oriented
covering or measure over that domain. It is only when the entire set of real values for
the Teichmüller parameter γ is obtained with a γ -independent integration measure that the
function F(λ), namely 
, defines an admissible gauge fixing choice.

For instance, the case F(λ) = 0 is readily seen to meet this admissibility requirement, and
to define a choice of gauge fixing which is known to be admissible for the considered class of
systems [2, 3, 5, 15]. Indeed, the equation of motion for λ then simply reads λ̇ = 0, showing
that all values of the Teichmüller parameter γ are obtained with a single multiplicity when
integrating over the free integration constant λ0 = λ(t0) at some time value t = t0, the b.c. in
this sector being π(ti,f ) = 0. One of the purposes of the present paper is to identify, at the
quantum level, a general criterion for the admissibility of the class of gauge fixing functions
in (17).

3.2. BRST quantization

Quantization of the BFV formulation amounts to constructing a linear representation space
for the (anti)commutation relations,

[q̂n, p̂m] = ih̄δn
m [λ̂, π̂ ] = ih̄ {ĉa, b̂b} = δa

b (19)

with η̂a = ĉa and P̂a = −ih̄b̂a , and equipped with an Hermitean inner product 〈 · | · 〉 such that
all these operators are self-adjoint. Note that ĉa2 = 0 and b̂2

a = 0.
Quantization of the ‘matter’ sector (qn, pn) has already been dealt with in section 2.2,

for which we shall use the same notations and choice of basis. An abstract representation
space for the ghost sector (ca, ba) is constructed as follows [5]: that sector of Hilbert space is
spanned by a basis with 22 = 4 vectors denoted | ± ±〉 (the first entry referring to the sector
a = 1 and the second to the sector a = 2; this convention also applies to the bra-states 〈±±|),
on which the ghost operators act as follows:

ĉ1|−−〉 = |+−〉 ĉ1|+−〉 = 0 ĉ1|−+〉 = | + +〉 ĉ1|++〉 = 0

ĉ2|−−〉 = |−+〉 ĉ2|+−〉 = −| + +〉 ĉ2|−+〉 = 0 ĉ2|++〉 = 0

b̂1|−−〉 = 0 b̂1|+−〉 = |−−〉 b̂1|−+〉 = 0 b̂1|++〉 = |−+〉
b̂2|−−〉 = 0 b̂2|+−〉 = 0 b̂2|−+〉 = |−−〉 b̂2|++〉 = −|+−〉.

(20)

Their only nonvanishing inner products are

〈−−| + +〉 = −〈+ − | − +〉 = 〈− + | + −〉 = −〈+ + |−−〉 (21)

with any of these numbers pure imaginary, such as for instance 〈−−| + +〉 = ±i. Finally, the
normal-ordered quantum ghost number operator is defined as

Q̂g = 1
2 [ĉa b̂a − b̂a ĉ

a] Q̂†
g = −Q̂g. (22)

Consequently, one has the following ghost number values for these states,

Q̂g|−−〉 = (−1)|−−〉 Q̂g|+−〉 = 0

Q̂g|−+〉 = 0 Q̂g|++〉 = (+1)|++〉. (23)

Even though at some later stage in our discussion we shall perform a circle
compactification of the Lagrange multiplier degree of freedom, let us at this point consider the
usual plane wave representation of the Heisenberg algebra in the (λ̂, π̂) Lagrange multiplier
sector. Eigenstates of these operators are thus defined by

λ̂|λ〉 = λ|λ〉 −∞ < λ < +∞ π̂ |π〉 = π |π〉 −∞ < π < +∞ (24)
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with the normalization choices,

〈λ|λ′〉 = δ(λ − λ′) 〈π |π ′〉 = δ(π − π ′) 11 =
∫ ∞

−∞
dλ|λ〉〈λ| =

∫ ∞

−∞
dπ |π〉〈π |. (25)

Consequently, one has the wavefunction representations of these operators acting on any state
|ψ〉,

〈λ|λ̂|ψ〉 = λ〈λ|ψ〉 〈λ|π̂ |ψ〉 = −ih̄
∂

∂λ
〈λ|ψ〉

〈π |λ̂|ψ〉 = ih̄
∂

∂π
〈π |ψ〉 〈π |π̂ |ψ〉 = π〈π |ψ〉

(26)

with the matrix elements for the change of basis,

〈λ|π〉 = 1√
2πh̄

e
i
h̄
λπ 〈π |λ〉 = 1√

2πh̄
e− i

h̄
λπ . (27)

The quantum BRST charge is given by

Q̂B = ĉ1π̂ + ĉ2φ̂ Q̂2
B = 0 Q̂

†
B = Q̂B. (28)

Furthermore, time evolution of the quantized system is generated by the BRST invariant
Hamiltonian operator

Ĥeff = Ĥ +
i

h̄
{
̂, Q̂B} (29)

leading to the BRST invariant evolution operator

Û eff(tf , ti) = e− i
h̄
�tĤeff . (30)

For the class of gauge fixing functions (17), an explicit evaluation finds

Ĥeff = Ĥ + βλ̂φ̂ + 1
2 [F(λ̂)π̂ + π̂F (λ̂)] + 1

2 [F(λ̂)π̂ − π̂F (λ̂)][b̂1ĉ
1 − ĉ1b̂1] + ih̄βb̂2ĉ

1 (31)

this operator being expressed in such a way as to make manifest its Hermiticity property,
Ĥ

†
eff = Ĥeff .

Classically within the extended formulation, physical states need to meet the constraints
π(t) = 0 and φ(t) = 0, which implies that for the BRST quantized system, the BRST
invariance conditions characterizing physical states must lead to the eigenvalues φk = 0 and
π = 0, namely k = k0 and π = 0. This is achieved by considering the cohomology of the
BRST charge, i.e. by considering the states which are BRST invariant but are defined modulo
a BRST transformation,

|ψ〉 = |ψphys〉 + Q̂B |ϕ〉 Q̂B |ψ〉 = 0. (32)

It may be shown that the general solution to this equation is given by

|ψphys〉 =
∑
k0

ψk0;−−(π = 0)|k0;π = 0;−−〉 +
∑
k0

{ψk0;+−(π = 0)|k0;π = 0; +−〉

+ ψk0;−+(π = 0)|k0;π = 0;−+〉} +
∑
k0

ψk0;++(π = 0)|k0;π = 0; ++〉 (33)

while the state |ϕ〉 may be constructed from the remaining components of the BRST invariant
state |ψ〉 expanded in the basis |k;π;±±〉, |ψ〉 = ∑

k;±±
∫ ∞
−∞ dπ ψn;±±(π)|n;π;±±〉.

Consequently, both the BRST cohomology classes at the smallest and largest ghost numbers,
Q̂g = −1 and Q̂g = +1, are in one-to-one correspondence with the physical states |k0〉 in
Dirac’s quantization (or |k0;π = 0〉 when the Lagrange multiplier sector is included), while
the BRST cohomology class at zero ghost number, Q̂g = 0, includes two copies of the Dirac
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physical states, associated with each of the ghost states |+−〉 and |−+〉. Physical states are
usually defined to correspond to the BRST cohomology class at zero ghost number [2].

The matrix elements of the BRST invariant evolution operator Û eff(tf , ti) between states
of ghost number (−1) all vanish identically, on account of the vanishing ghost number of Ĥeff

and the vanishing inner product 〈−−|−−〉 = 0,

〈kf ;πf ;−−|Û eff(tf , ti)|ki;πi;−−〉 = 0 (34)

irrespective of the choice of gauge fixing function 
, and whether the external states of ghost
number (−1) are BRST invariant or not.

However, these are not the matrix elements of Û eff(tf , ti) that ought to correspond to those
in (10) and (11) which describe in Dirac’s quantization the propagation of physical states only.
Indeed, the latter may be obtained only for external states which are BRST invariant and
of vanishing ghost number, in direct correspondence with the choice of such b.c. in (16).
Equivalently, given the action of the ghost and BRST operators, such states are spanned by
the set |k;π = 0;−+〉, so that we now have to address the explicit evaluation of the matrix
elements

〈kf ;πf = 0;−+|Û eff(tf , ti)|ki;πi = 0;−+〉. (35)

By construction, these matrix elements are clearly BRST and thus gauge invariant, and include
those of the BRST cohomology class at zero ghost number associated with one of the two sets
of states corresponding to Dirac’s physical states. Nevertheless, these matrix elements are not
totally independent of the choice of gauge fixing function 
, as shall now be established.

3.3. The BFV-BRST invariant propagator

Given the choice of gauge fixing function in (17) and the expression for the associated
Hamiltonian Ĥeff in (31), it is clear that (35) factorizes into two contributions, whether the
conditions πf = 0 = πi required for BRST invariance of the external states are enforced or
not,

〈kf ;πf ;−+|Û eff(tf , ti)|ki;πi;−+〉 = 〈kf | exp
(
− i

h̄
�tĤ

)
|ki〉 × N (πf , πi;φki

) (36)

with the factor N (πf , πi;φki
) given by4

N (πf , πi;φki
) = 〈πf ;−+| exp

(
− i

h̄
�t

[
βφki

λ̂ +
1

2
(F (λ̂)π̂ + π̂F (λ̂))

+
1

2
(F (λ̂)π̂ − π̂F (λ̂))(b̂1ĉ

1 − ĉ1b̂1) + ih̄βb̂2ĉ
1

])
|πi;−+〉. (37)

Of course, one is particularly interested in the value for N (πf = 0, πi = 0;φki
) as function

of the first-class constraint spectral value φki
or φkf

.
As a warm-up, let us first restrict to the choice F(λ) = 0, known to be admissible. On

the basis of the above explicit expression for N (πf , πi;φki
), it is clear that in this case, one

has the further factorization

N (πf , πi;φki
) = 〈−+| eβ�tb̂2 ĉ

1 |−+〉〈πf | exp
(
− i

h̄
β�tφki

λ̂
)

|πi〉 (38)

whose value readily reduces to

N (πf , πi;φki
) = −β�t〈−+|+−〉δ(πi − πf − β�tφki

). (39)

4 Note that in this expression one could also replace the value φki
by φkf

.
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Restricting then to the BRST invariant external states, one has finally (the condition �t > 0
is implicit),

〈kf ;πf = 0;−+|Û eff(tf , ti)|ki;πi = 0;−+〉
= −sgn(β)〈−+|+−〉δ(φki

)〈kf | exp
(
− i

h̄
�tĤ

)
|ki〉. (40)

Hence indeed, all these matrix elements vanish identically, unless both external states are
physical, namely ki = k0,i and kf = k0,f or φki

= 0 = φkf
. However, when the external states

are physical, these matrix elements are singular, on account of the δ-function δ(φki
). Clearly,

this is a direct consequence of the plane wave representation of the Heisenberg algebra
in the Lagrange multiplier sector (λ̂, π̂) of the BFV extended phase space. Nevertheless,
up to the singular normalization factor (−sgn(β)〈−+|+−〉δ(φki

)), the BFV-BRST invariant
matrix elements reproduce correctly the result in (10) for the propagator of physical states
within Dirac’s quantization approach. On the other hand, note also that this distribution-
valued normalization factor is not entirely independent of the choice of function 
 even when
F(λ) = 0, since it depends on the sign of the arbitrary parameter β. In spite of that dependency,
an admissible gauge fixing is achieved since all of modular space is indeed recovered with a
γ -independent integration measure.

Turning now to an arbitrary choice of function F(λ), the explicit and exact evaluation of
N (πf , πi;φki

) may proceed through its discretized path integral representation. Applying the
approach detailed in [5], one then establishes the general and exact result,

N (πf = 0, πi = 0;φki
) = −β〈−+|+−〉

∫
D[F ]

dγ

2πh̄
exp

(
− i

h̄
βγ φki

)
(41)

where the domain of integration D[F ] in modular space is identified as follows. Given a
choice for the function F(λ) and thus the gauge fixing condition in (18), the solution λ(t; λf )

is obtained as function of the integration constant λf = λ(tf ; λf ) at the final value of the time
interval [ti , tf ], thereby leading to a specific value γ (λf ) for the Teichmüller parameter. As
the integration constant λf varies over its entire domain of definition, −∞ < λf < +∞, the
modular parameter γ (λf ) then defines a certain domain D[F ] in modular space, including
the orientation induced by the sign of dγ (λf )/dλf in the case of multicoverings. This is
how the choice of gauge fixing function F(λ) determines a specific covering of modular
space, namely a specific domain D[F ] in γ together with a specific integration measure.
This is precisely the manner [3–5] in which the gauge invariant BFV-PI is dependent on the
choice of gauge fixing fermion function 
, in contradiction with the usual statement [2] of the
Fradkin–Vilkovisky theorem.

An admissible choice of gauge fixing is thus associated with D[F ] being the entire real
line, in which case,

N (πf = 0, πi = 0;φki
) = −β〈−+|+−〉δ(βφki

) = −sgn(β)〈−+|+−〉δ(φki
) (42)

thus indeed reproducing the result (40) established for F(λ) = 0. A more general class of
admissible gauge choices is given by

F(λ) = a + bλ (43)

a and b being constant parameters. On the other hand, choices such as

F(λ) = a + bλ + cλ2 (c �= 0) F (λ) = aλ3 (a > 0)

F (λ) = e−aλ (a > 0) (44)

all define gauge fixing choices which are not admissible [3–5, 8]. For instance when F(λ) =
aλ3, the modular domain D[F ] is finite and given by the interval [−√

2�t/a,
√

2�t/a] in
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modular space. The BFV-PI is thus indeed dependent on the choice of gauge fixing function,
albeit in a gauge invariant manner. Nonetheless, in the limit that a → 0, an admissible
covering of modular space is recovered, associated with the choice F(λ) = 0.

3.4. Deconstructing the Fradkin–Vilkovisky theorem

An argument often invoked [2] in support of complete independence of the BFV-PI on the
choice of gauge fixing fermion is based on the observation that for BRST invariant external
states |ψ1〉 and |ψ2〉 such that Q̂B |ψi〉 = 0 (i = 1, 2), the matrix elements of the operator
{
̂, Q̂B} vanish identically,

〈ψ1|{
̂, Q̂B}|ψ2〉 = 〈ψ1|[
̂Q̂B + Q̂B
̂]|ψ2〉 = 0 (45)

where the last equality follows by considering the separate action of the BRST operator Q̂B on
the external states adjacent to it. Indeed, given nilpotency of the BRST charge, Q̂2

B = 0, this
argument should also extend to similar matrix elements of the evolution operator Û eff(tf , ti)

which includes the contribution,

exp
(
− i

h̄
�t

i

h̄
{
̂, Q̂B}

)
= 11 +

�t

h̄2 [
̂Q̂B + Q̂B
̂]

+
1

2!

(
�t

h̄2

)2

[
̂Q̂B
̂Q̂B + Q̂B
̂Q̂B
̂] + · · · . (46)

In the case of the factor N (πf , πi;φki
), this argument would appear to imply that one

should have, for the states of interest,

〈πf = 0;−+| exp
(
− i

h̄
�t

i

h̄
{
̂, Q̂B}

)
|πi = 0;−+〉

= 〈πf = 0;−+|πi = 0;−+〉 = δ(0) · 0 (47)

given the facts that 〈πf |πi〉 = δ(πf − πi) and 〈−+|−+〉 = 0. Even though this expression
is ill defined, it appears to be totally independent of the choice of gauge fixing fermion 
, in
sharp contrast with its previous evaluations.

The singular character of this result follows once again from the plane wave representation
of the Lagrange multiplier sector (λ̂, π̂). Consequently, matrix elements are generally
distribution valued, and cannot simply be evaluated at specific values of their arguments.
Rather, they should be convolved with test functions, or else evaluated first for arbitrary
values of their arguments [5]. Hence the above argument certainly cannot be claimed to be
standing on a sound basis, and needs to be reconsidered carefully for the explicit evaluation of
N (πf , πi;φki

) given a specific value φki
for the constraint eigenvalue but as yet unspecified

values for πf and πi .
In order to remain faithful to the spirit of the above argument, the calculation needs to

be performed in the form as given in (46), namely not by first computing the result of the
anticommutator {
̂, Q̂B} and only then compute its matrix elements—in effect, this is the
procedure used to reach the results of section 3.3—but rather by having the operators act from
left to right onto the external state |ψ2〉 for the first term inside the square brackets at each
order in �t/h̄2 in (46), and from right to left onto the state 〈ψ1| for the second term. This
calculation is straightforward for the specific admissible choice F(λ) = 0, in which case one
obtains,

N (πf , πi;φki
) = ih̄β(πi − πf )〈−+|+−〉

∞∑
k=1

1

k!

(
�t

h̄2

)k

(−ih̄βφki
)k−1〈πf |λ̂k|πi〉. (48)

It would appear that indeed, this expression vanishes whenever one considers BRST invariant
external states for which πf = 0 = πi . However, this is not the case, since the factor which



7370 J Govaerts and F G Scholtz

is multiplied by (πi − πf ) is itself singular for the values πf = 0 = πi , being distribution
valued. Indeed, the above sum may also be expressed as

N (πf , πi;φki
) = − 1

φki

〈−+|+−〉(πi − πf )〈πf |
∞∑

k=1

1

k!

(
�t

h̄2

)k

(−ih̄βφki
)kλ̂k|πi〉

= − 1

φki

〈−+|+−〉(πi − πf )〈πf |
[
exp

(
− i

h̄
�tβφki

λ̂
)

− 1
]
|πi〉

= − 1

φki

〈−+|+−〉(πi − πf )[δ(πi − πf − β�tφki
) − δ(πi − πf )]

= −β�t〈−+|+−〉δ(πi − πf − β�tφki
) (49)

a result that coincides with (39). Nevertheless, the details of the calculation in the above series
of relations make manifest the fact that had one set from the outset the values πf = 0 = πi , an
identically vanishing result would have been obtained, rather than the correct but distribution-
valued one, N (πf = 0, πi = 0;φki

) = −β�t〈−+|+−〉δ(β�tφki
), which does vanish unless

when precisely φki
= 0. On the other hand, if from the outset one considers a value φki

= 0,
one finds through the above analysis,

N (πf , πi;φki
) = ih̄β(πi − πf )〈−+|+−〉�t

h̄2 〈πf |λ̂|πi〉

= ih̄β(πi − πf )〈−+|+−〉�t

h̄2

(
−ih̄

∂

∂πi

δ(πi − πf )

)

= −β�t〈−+|+−〉δ(πi − πf ) (50)

once again in agreement with the general results in (39) and (49). However, performing
such a calculation with πf = 0 = πi from the outset leads back to an identically vanishing
result, missing once again the correct distribution-valued result, N (πf = 0, πi = 0;φki

) =
−β�t〈−+|+−〉δ(β�tφki

).
In conclusion, these considerations establish that the argument based on (45) or (46),

purportedly a confirmation that the BFV-PI is necessarily totally independent of the gauge
fixing fermion 
, is not warranted. Being distribution-valued quantities, the relevant matrix
elements have to be convolved with test functions, or equivalently, first be evaluated for
whatever external states, and only at the end restricted to the BRST invariant ones. In particular,
setting from the outset the values πf = 0 = πi is ill fated, indeed even leads to ill-defined
quantities such as 0 · δ(0). Nevertheless, when properly computed, the end result is perfectly
consistent with that established in the previous section in a totally independent manner. And
in the latter approach, a general expression for N (πf , πi;φki

) is even amenable to an exact
evaluation for whatever choice of function F(λ), through a path integral representation of the
matrix elements of relevance. This exact result displays explicitly the full extent to which,
in a manner totally consistent with the built-in gauge invariance properties of the BFV-PI,
the gauge-fixed BFV-BRST path integral is indeed dependent on the choice of gauge fixing
fermion 
 [3–5], namely only through the gauge equivalence class to which that gauge fixing
choice belongs, such a gauge equivalence class being characterized by a specific covering of
modular space. Being gauge invariant, the BFV-PI necessarily reduces to an integral over
modular space, irrespective of the gauge fixing choice. Nevertheless, which domain and
integration measure over modular space are thereby induced are function of the choice of
gauge fixing conditions. The BFV-PI is not totally independent of the choice of gauge fixing
fermion 
.
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4. The admissibility criterion

As manifest from previous expressions, the plane wave representation of the Heisenberg
algebra in the Lagrange multiplier sector (λ̂, π̂) leads to distribution-valued results for specific
BFV-BRST matrix elements. Consequently, it is sometimes claimed [16] that this very fact
calls into question the relevance of the counter-examples to the usual statement of the FV
theorem available in the literature and described in the previous sections, while a proper
handling of the ensuing singularities would show that these counter-examples are actually ill
fated, and that indeed, the BFV-PI ought to be totally independent of the choice of gauge fixing
fermion 
.

In order to avoid having to deal with non-normalizable plane wave states, let us now
regularize the Lagrange multiplier sector by compactifying the degree of freedom λ onto a
circle of circumference 2L such that −L � λ < L, it being understood that any quantity
of interest has to be evaluated in the decompactification limit L → ∞. Furthermore, the
representation of the Heisenberg algebra [λ̂, π̂ ] = ih̄, which is to be used on this space with
the nontrivial mapping class group π1(S1) = Z, is that of vanishing U(1) holonomy5 [17].
Consequently, this sector of Hilbert space is now spanned by a discrete set of π̂ -eigenstates
for all integer values m,

π̂ |m〉 = πm|m〉 πm = πh̄

L
m 〈m|m′〉 = δm,m′ 11 =

∑
m

|m〉〈m|. (51)

The configuration space wavefunctions are

〈λ|m〉 = 1√
2L

exp
(

i
πm

L
λ
)

〈m|λ〉 = 1√
2L

exp
(
−i

πm

L
λ
)

(52)

|λ〉 being the configuration space basis such that

λ̂|λ〉 = λ|λ〉 −L � λ < L 〈λ|λ′〉 = δ2L(λ − λ′) 11 =
∫ L

−L

dλ|λ〉〈λ|. (53)

Given an arbitrary state |ψ〉 and its configuration space wavefunction ψ(λ) = 〈λ|ψ〉 which
must be single valued on the circle, one has

〈λ|λ̂|ψ〉 = λψ(λ) 〈λ|π̂ |ψ〉 = −ih̄
d

dλ
ψ(λ). (54)

States in this sector are thus characterized by the normalizibility condition
∫ L

−L
dλ|ψ(λ)|2 <

∞. In the above relations, δ2L(λ − λ′) stands for the δ-function on the circle of circumference
2L,

δ2L(λ − λ′) = 1

2L

∑
m

exp
(

i
πm

L
(λ − λ′)

)
. (55)

Given such a discretization of the Lagrange multiplier sector (λ̂, π̂), let us now address
again the different points raised previously concerning the FV theorem.

BRST cohomology classes remain characterized in the same way as previously. The
general solution to the BRST invariance condition Q̂B |ψ〉 = 0, namely |ψ〉 = |ψphys〉+Q̂B |ϕ〉,
is given by

|ψphys〉 =
∑
k0

ψk0;m=0;−−|k0;m = 0;−−〉 +
∑
k0

{ψk0;m=0;+−|k0;m = 0; +−〉

+ ψk0;m=0;−+|k0;m = 0;−+〉} +
∑
k0

ψk0;m=0;++|k0;m = 0; ++〉 (56)

5 A representation of nonvanishing U(1) holonomy may also be used, provided the BRST charge is given a quantum
correction linear in the holonomy in order to preserve its nilpotency, thereby preserving all our conclusions.
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while the state |ϕ〉 may be constructed from the remaining components of the BRST
invariant state |ψ〉 expanded in the basis |k;m;±±〉, |ψ〉 = ∑

k;m;±± ψk;m;±±|k;m;±±〉.
Consequently, both the BRST cohomology classes at the smallest and largest ghost numbers,
Q̂g = −1 and Q̂g = +1, are in one-to-one correspondence with the physical states |k0〉 in
Dirac’s quantization (or |k0;m = 0〉 when the Lagrange multiplier sector is included), while
the BRST cohomology class at zero ghost number, Q̂g = 0, includes two copies of the Dirac
physical states, associated with each of the ghost states |+−〉 and |−+〉. Physical states are
usually defined to correspond to the BRST cohomology class at zero ghost number [2].

The matrix elements of the BRST invariant evolution operator Û eff(tf , ti) between states
of ghost number (−1) all vanish identically, on account of the vanishing ghost number of Ĥeff

and the vanishing inner product 〈−−|−−〉 = 0,

〈kf ;mf ;−−|Û eff(tf , ti)|ki;mi;−−〉 = 0 (57)

irrespective of the choice of gauge fixing function 
, and whether the external states of ghost
number (−1) are BRST invariant or not.

However, these are not the matrix elements of Û eff(tf , ti) that ought to correspond to those
in (10) and (11) which describe in Dirac’s quantization the propagation of physical states only.
Indeed, the latter may be obtained only for external states which are BRST invariant and
of vanishing ghost number, in direct correspondence with the choice of such b.c. in (16).
Equivalently, given the action of the ghost and BRST operators, such states are spanned by
the set |k;m = 0;−+〉, so that we now have to address the explicit evaluation of the matrix
elements

〈kf ;mf = 0;−+|Û eff(tf , ti)|ki;mi = 0;−+〉 (58)

the discretized analogues of the matrix elements in (35). As before these matrix elements are,
by construction, BRST and thus gauge invariant, and include those of the BRST cohomology
class at zero ghost number associated with one of the two sets of states corresponding to
Dirac’s physical states. Nevertheless, they are not totally independent of the choice of gauge
fixing function 
, as shall now be established once again.

4.1. Evaluation of the BRST invariant matrix elements

In order to evaluate the matrix elements (58), rather than using a path integral approach, the
operator representation of the quantized system shall be considered. Given the choice of gauge
fixing function in (17) and the expression for the associated Hamiltonian Ĥeff in (31), it is
clear that (58) as well as its extension for whatever values for mf and mi factorizes as

〈kf ;mf ;−+|Û eff(tf , ti)|ki;mi;−+〉 = 〈kf | exp
(
− i

h̄
�tĤ

)
|ki〉 × NL(mf ,mi;φki

) (59)

with the factor NL(mf ,mi;φki
) given by6

NL(mf ,mi;φki
) = 〈mf ;−+| exp

(
− i

h̄
�t

[
βφki

λ̂ +
1

2
(F (λ̂)π̂ + π̂F (λ̂))

+
1

2
(F (λ̂)π̂ − π̂F (λ̂))(b̂1ĉ

1 − ĉ1b̂1) + ih̄βb̂2ĉ
1

])
|mi;−+〉. (60)

The evaluation of the ghost contribution to this factor, through a direct expansion of the
exponential operator and a resolution of the ensuing recurrence relations, implies a further

6 Note that in this expression one could as well replace the value φki
by φkf

.
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factorization

NL(mf ,mi;φki
) = −ih̄β〈−+|+−〉 × 〈mf |

∞∑
n=0

1

(n + 1)!

(
− i

h̄
�t

)n+1

×
n∑

k=0

(
βφki

λ̂ + π̂F (λ̂)
)k(

βφni
λ̂ + F(λ̂)π̂

)n−k|mi〉. (61)

Consider then the quantities[
βφki

λ̂ + F(λ̂)π̂
]n|m = 0〉 = Gn(λ̂)|m = 0〉 n = 0, 1, 2, . . . , (62)

where the functions Gn(λ) are defined by their relation to the lhs operator acting on the state
|m = 0〉. These functions obey the recurrence relations

Gn+1(λ) = βφki
λGn(λ) − ih̄F (λ)

dGn(λ)

dλ
G0(λ) = 1. (63)

Introducing the variable u such that

dλ(u)

du
= F(λ(u)) (64)

given some initial value λ0 = λ(u0), the functions Gn(λ) are solved by

Gn(λ) = exp

(
− i

h̄
βφki

∫ u

u0

dv λ(v)

) (
−ih̄

d

du

)n

exp

(
i

h̄
βφki

∫ u

u0

dv λ(v)

)
. (65)

Using the representation

[
βφki

λ̂ + F(λ̂)π̂
]n|m = 0〉 =

∫ L

−L

dλ√
2L

|λ〉Gn(λ) (66)

it thus follows that one may write

NL(mf = 0,mi = 0;φki
) = −ih̄β〈−+|+−〉

×
∫ L

−L

dλ

2L

∞∑
n=0

1

(n + 1)!

(
− i

h̄
�t

)n+1 n∑
k=0

G∗
k(λ)Gn−k(λ). (67)

It is of interest to first consider the choice F(λ) = 0, which is known to define an
admissible gauge fixing. One then has Gn(λ) = (βφki

λ)n, leading to the following values,

• If φki
= 0 : NL(mf = 0,mi = 0;φki

) = −β�t〈−+|+−〉;

• If φki
�= 0 : NL(mf = 0,mi = 0;φki

) = −β�t〈−+|+−〉 × sin
(
β�tLφki

/h̄
)

(
β�tLφki

/h̄
) .

(68)

Consequently, in the limit L → ∞, the matrix elements (58) are given by

• if ki �= k0 or kf �= k0 :
〈kf ;mf = 0;−+|Û eff(tf , ti)|ki;mi = 0;−+〉 = 0;

• if ki = k0,i and kf = k0,f :
〈kf ;mf = 0;−+|Û eff(tf , ti)|ki;mi = 0;−+〉 = [−β�t〈−+|+−〉]
×〈k0,f | exp

(
− i

h̄
�tĤ

)
|k0,i〉.

(69)

Hence indeed, up to a β-dependent normalization, these matrix elements reproduce those in
(10) representing within Dirac’s quantization the propagation of physical states only. Given
the representation in (11), one thus concludes that the choice F(λ) = 0 defines an admissible
gauge fixing.
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Let us now turn to the general case of an arbitrary function F(λ). Given the result (67), it
is clear that whenever φki

= 0 and φkf
= 0, the matrix element (58) reduces again to the same

value as in (68) and (69). However, it is the decoupling of the unphysical states which may
not be realized [6], implying specific restrictions on the choice for F(λ). In order to apply the
limit L → ∞ to these matrix elements, it is best to introduce a rescaled variable λ = Lλ̃ with
−1 � λ̃ < 1. Given the general expression (67), it should be clear that in order to reproduce
the same results as in the admissible case F(λ) = 0, the following limit

lim
L→∞

1

L
F(Lλ̃) = F̃ (λ̃) (70)

is to define a finite function F̃ (λ̃) of λ̃ for all values of λ̃. Whenever this criterion is met, the
choice of gauge fixing function in (17) defines an admissible gauge fixing of the system, for
which the BRST invariant matrix elements (58) are given as in (69), and do indeed reproduce,
up to some normalization factor which is also a function of the parameter β, the correct time
evolution of Dirac’s physical states only. Note, however, that the resulting matrix elements
in (69) are nonetheless functions of the parameter β appearing in such choices of admissible
functions 
. Furthermore, when the criterion (70) is not met, the associated choice of gauge
fixing is not admissible, since the BRST invariant matrix elements (58) then do not coincide
with (69), and thus cannot be expressed through a single integral covering of Teichmüller
space as in (11). In other words, the BFV-PI, which provides the phase space path integral
representation for the BRST invariant matrix elements (58), cannot be entirely independent
of the choice of gauge fixing ‘fermion’ function 
, in contradiction with the FV theorem as
usually stated.

The conclusion reached in (70) is also consistent with the explicit examples available in
the literature and recalled in (43) and (44). Note that all these examples do indeed agree with
the general criterion for admissibility established in (70).

4.2. Deconstructing the Fradkin–Vilkovisky theorem in discretized form

Let us now address, within the discretized Lagrange multiplier sector, the general argument
claiming to confirm independence of the BFV-PI on the choice of gauge fixing fermion, based
on the expressions (45) and (46).

First consider again the states of ghost number (−1), spanned by |k;m;−−〉 for all values
of k and m. One readily finds

〈k1;m1;−−|{
̂, Q̂B}|k2;m2;−−〉 = 0 (71)

as it must since {
̂, Q̂B} is of zero ghost number, while the (−1) ghost number sector is
spanned only by |−−〉 which is such that 〈−−|−−〉 = 0. Note that this result also agrees
with that established in (57), which applies for the same reasons. Thus the conclusion in (45)
is valid on the BRST cohomology class at ghost number (−1) on account of these simple and
general facts, totally independent of the choice for 
, and, for that matter, of the argument in
(45) itself.

Let us now consider the BRST invariant states |k;m = 0;−+〉 used in the evaluation
of the BFV-PI, and more generally the matrix elements of the operator in (46), at a specific
eigenvalue φki

of the constraint φ̂, for the states |m;−+〉,
NL(mf ,mi;φki

) = 〈mf ;−+| exp
(
− i

h̄
�t

i

h̄
{
̂, Q̂B}

)
|mi;−+〉 (72)

it being understood that the action of the operators on these external states is evaluated along
the same lines as in section 3.4. Hence, this evaluation shall also be done for the specific
choice F(λ) = 0 known to be admissible and to lead to the results in (68) and (69).
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The explicit expansion of the above matrix elements then reduces to the following series
of expressions, in perfect analogy with the calculation in (49):

NL(mf ,mi;φki
) = ih̄β

πh̄

L
(mi − mf )〈−+|+−〉

∞∑
k=1

1

k!

(
�t

h̄2

)k (−ih̄βφki

)k−1〈mf |λ̂k|mi〉

= − 1

φki

πh̄

L
(mi − mf )〈−+|+−〉〈mf |

[
exp

(
− i

h̄
�tβφki

λ̂
)

− 1
]
|mi〉

= − 1

φki

πh̄

L
(mi − mf )〈−+|+−〉

{
〈mf | exp

(
− i

h̄
�tβφki

λ̂
)

|mi〉 − δmf ,mi

}

= −β�t〈−+|+−〉 1

β�tφki

πh̄

L
(mi − mf )

∫ L

−L

dλ

2L
exp

(
i
π

L
(mi − mf )λ

)

× exp
(
− i

h̄
β�tφki

λ
)

. (73)

Note that in this form, setting from the outset the values mf = 0 = mi leads to a vanishing
expression, as it did in the analysis of section 3.4. Furthermore, if from the outset we take the
physical values φki

= 0 = φkf
, only the term with k = 1 in the above sum survives, leading

to the following values,

• If mf = mi : NL(mf ,mi;φki
) = 0;

• If mf �= mi : NL(mf ,mi;φki
) = β�t〈−+|+−〉 cos π(mi − mf ).

(74)

None of these results thus reproduce the correct ones in (68). However, in the plane wave
representations of section 3.4 these quantities being distribution valued, a final integration by
parts had to be applied before recovering the correct result. Likewise in the present discretized
representation, the final evaluation of the above expression finally leads to

NL(mf ,mi;φki
) = −β�t〈−+|+−〉

{∫ L

−L

dλ

2L
exp

(
i
π

L
(mi − mf )λ

)
exp

(
− i

h̄
β�tφki

λ
)

− eiπ(mi−mf ) sin(β�tLφki
/h̄)

(β�tLφki
/h̄)

}
. (75)

Setting now mf = 0 = mi , still the value for NL(mf = 0,mi = 0;φki
) vanishes identically,

irrespective of whether the constraint eigenvalue φki
is physical or not. Nevertheless, by

having compactified the degree of freedom λ(t) onto a circle thus leading only to a discrete
spectrum of quantum states in the Lagrange multiplier sector (λ̂, π̂), we have avoided any use
of distribution-valued matrix elements. Why, then, does the argument based on (45) and (46)
still not lead to the correct result?

The fact of the matter is that the adjoint action from the right onto the external states
〈mf ;−+| of the operators (Q̂B
̂Q̂B
̂ · · ·) in (46) is not necessarily warranted when the
operators λ̂ and π̂ appear in combination for the compactified regularization. For example,
consider the matrix elements

〈mf |λ̂π̂ |mi〉 = πh̄

L
mi〈mf |λ̂|mi〉 〈mf |π̂ λ̂|mi〉 = πh̄

L
mf 〈mf |λ̂|mi〉 (76)

where in the second expression the adjoint action of the operator π̂ onto the state 〈mf | is used.
However, one must then conclude that

〈mf |[λ̂, π̂ ]|mi〉 = πh̄

L
(mi − mf )〈mf |λ̂|mi〉 (77)

in obvious contradiction with the Heisenberg algebra,

〈mf |[λ̂, π̂ ]|mi〉 = ih̄〈mf |mi〉 = ih̄δmf ,mi
. (78)
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In the presence of the operator λ̂, the adjoint action of π̂ on bra-states should be avoided.
Rather, one should evaluate the action of all operators from the left onto ket-states and only at
the very end project the result onto the relevant bra-states. For instance,

λ̂π̂ |mi〉 = πh̄

L
miλ̂|mi〉 π̂ λ̂|mi〉 = −ih̄|mi〉 +

πh̄

L
miλ̂|mi〉 (79)

so that

〈mf |λ̂π̂ |mi〉 = πh̄

L
mi〈mf |λ̂|mi〉 〈mf |π̂ λ̂|mi〉 = −ih̄δmf ,mi

+
πh̄

L
mi〈mi |λ̂|mi〉 (80)

in obvious agreement with the Heisenberg algebra [λ̂, π̂ ] = ih̄. The same conclusions may be
reached by considering the explicit wavefunction representations of the Heisenberg algebra
given in (52) and (53) for the circle topology. In fact, the operator λ̂ being represented through
multiplication by λ of single-valued wavefunctions 〈λ|ψ〉 on the circle for which the operator
π̂ = −ih̄∂/∂λ is self-adjoint, leads to wavefunctions that are no longer single valued on the
circle. In particular, the required integration by parts corresponding to the adjoint action of
the derivative operator π̂ = −ih̄∂/∂λ induces a nonvanishing surface term because of the lack
of single-valuedness of the wavefunction λ〈λ|ψ〉, in direct correspondence with the second
relation in (80). In other words, even though both operators are well defined on the space of
normalizable wavefunctions on the circle, the operator λ̂ maps outside the domain of states
for which the operator π̂ is self-adjoint.

This is the thus the core reason why the evaluation of the matrix element (58) according
to the argument in (46) in which the strings of operators (· · · 
̂Q̂B
̂Q̂B) and (Q̂B
̂Q̂B
̂ · · ·)
act separately from the left onto the ket-states |mi;−+〉 and from the right onto the bra-
states 〈mf ;−+|, respectively, is unwarranted. Indeed, even when F(λ) = 0, precisely the
combination π̂ λ̂ appears in the product Q̂B
̂ for which, as detailed above, the adjoint action of
π̂ from the right onto the bra-states is not justified unless the proper surface term contributions
are accounted for as well (whereas for the product 
̂Q̂B the relevant combination is λ̂π̂ which
unambiguously acts from the left onto the ket-states).

Nevertheless, such ambiguities do not arise for the actual anticommutator {
̂, Q̂B} when
it is explicitly evaluated, without keeping the two classes of terms separate as done in the
argument based on (45) and (46). For example when F(λ) = 0, the potentially troublesome
term that is then left over is simply

{−ih̄βb̂2λ̂, ĉ1π̂} = −ih̄β[λ̂, π̂ ]b̂2ĉ
1 = h̄2βb̂2ĉ

1 (81)

and is thus responsible for the transformation of the ghost ket-state |−+〉 into the state |+−〉
possessing a nonvanishing overlap with the ghost bra-state 〈−+|.

Applying this prescription for the evaluation of the matrix elements in (72), in fact one
is brought back to the approach used in section 4.1, thereby reproducing the general results
established in that context. For example when F(λ) = 0, a direct calculation along the lines
of (73) readily finds

NL(mf ,mi;φki
) = −β�t〈−+|+−〉〈mf | exp

(
− i

h̄
β�tφki

λ̂
)

|mi〉, (82)

hence finally

• if φki
= 0 : NL(mf ,mi;φki

) = −β�t〈−+|+−〉δmf ,mi
;

• if φki
�= 0 : NL(mf ,mi;φki

) = −β�t〈−+|+−〉

×
∫ L

−L

dλ

2L
exp

(
− i

h̄
β�tφki

λ
)

exp
(

i
π

L
(mi − mf )λ

) (83)
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a result to be compared to (75) in light of the remarks in (79) and (80). In particular, setting
then mf = 0 = mi , exactly the same results as in (68) and (69) in the L → ∞ limit are thus
recovered.

In conclusion, even though the compactification regularization of the Lagrange multiplier
sector was introduced to circumvent the subtle issues explaining why the argument, based
on (45) and (46) and plane wave representations of the Heisenberg algebra and claiming to
confirm that the BFV-PI indeed ought to be totally independent of the choice of gauge fixing
fermion 
, is unwarranted, new subtleties arise for a finite value of L implying again that this
argument does not stand up to closer scrutiny. When properly analysed, the argument rather
confirms once again the results obtained by direct evaluation of the relevant matrix elements.
In particular, these matrix elements corresponding to the BFV-PI, even though gauge invariant,
are not independent of the choice of gauge fixing procedure. The general criterion for the
admissibility of the class of gauge fixing fermions defined in (17) is provided in (70).

5. Conclusions

Rather than gauge fixing the system through its Lagrange multiplier sector, as is achieved
through the choice made in (17), it is also possible to contemplate gauge fixing in phase space
through some condition of the form χ(qn, pn) = 0, which, within the BFV-BRST formalism,
is related to the following choice of gauge fixing ‘fermion’,


 = ρP1χ(qn, pn) + βP2λ (84)

where ρ is an arbitrary real parameter. In the same manner as described in this paper for the
class of gauge choices (17), it would be of interest to identify a criterion that the function
χ(qn, pn) should meet in order that the associated gauge fixing be admissible. However, this
issue turns out to be quite involved, and we have not been able to develop a general solution.
In fact, in contradistinction to the class of gauge fixings analysed in this paper, the answer to
this problem in the case of the choices in (84) would also depend on more detailed properties
of the first-class Hamiltonian H, the structure of the original configuration space qn, and how
the local gauge transformations generated by the first-class constraint φ act on that space. In
[6], two specific models are considered for which the criterion of admissibility in terms of the
function χ(qn, pn) is indeed different for each model.

Another simple model which was considered is defined by the seemingly trivial action

S[q] =
∫

dt Nq̇ (85)

where the single degree of freedom q(t) takes its values in a circle of radius R, while N is
some normalization factor. The associated first-class constraint φ = p−N generates arbitrary
redefinitions of the coordinate q(t), while in this case the first-class Hamiltonian H vanishes,
H = 0. An admissible phase space gauge fixing condition is χ(q, p) = q − qi, qi being
some initial value for q(t). At the quantum level, and when taking due account of a possible
nontrivial U(1) holonomy [17] for the representation of the Heisenberg algebra [q̂, p̂] = ih̄,
it turns out that the factor N is quantized and that the physical spectrum is reduced to a
single p̂-eigenstate. When computing the BRST invariant matrix elements (58) of interest
for the choice of gauge fixing (84) with χ = q − qi , the admissibility of this gauge fixing is
confirmed, once again up to a normalization factor stemming from the ghost and Lagrange
multiplier sectors which is explicitly dependent on the parameters ρ and β appearing in 
.
In particular, and as is also the case with the result established in (69), the BRST invariant
matrix elements (58) vanish identically in the limit β → 0, including those for ki = k0,i and
kf = k0,f which should correspond to the nonvanishing physical ones in (10).
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Hence, contrary to the usual statement of the Fradkin–Vilkovisky theorem, the
BRST/gauge invariant BFV path integral is not totally independent of the choice of gauge
fixing ‘fermion’ 
. This paper revisited once again this issue, with two main conclusions.
First, for a general class of gauge fixing ‘fermions’, it identified a general criterion for
admissibility within a simple general class of constrained systems with a single first-class
constraint which commutes with the first-class Hamiltonian. This criterion is in perfect
agreement with the conclusions of explicit counter-examples to the usual statement of the FV
theorem, and it may be seen as a continuation of the work in [6]. Second, the basic reasons why
the general argument claiming to establish complete independence of the BFV-PI on the gauge
fixing ‘fermion’ is unwarranted in the case of the associated BRST invariant matrix elements,
have been addressed in simple terms. It has been shown that the lack of total independence
from 
 of the BFV-PI arises because, whereas the action of the anticommutator {
̂, Q̂B} on
BRST invariant states is unambiguous, the naive evaluation of this action through the seperate
actions of the operators 
̂Q̂B and Q̂B
̂ is ambiguous.

These conclusions were reached by two separate routes, namely by working either with
the plane wave representation on the real line for the Lagrange multiplier sector Heisenberg
algebra, or else by compactifying that sector onto a circle in order to avoid having to deal with
non-normalizable states and a continuous spectrum of eigenstates. In the first approach, it
was shown that due to the distribution-valued character of the relevant matrix elements, usual
arguments claiming to establish complete independence from 
 have to be considered with
greater care, thereby confirming the lack of total independence, even though manifest gauge
invariance is preserved throughout. In the compactified approach, it was shown that the usual
argument is beset by another ambiguity, namely the fact that the Lagrange multiplier operator
λ̂ maps outside of the domain of normalizable states for which the conjugate operator π̂ is
self-adjoint, inducing further crucial surface terms which are ignored by the usual argument.
Incidentally, were it not for such subtle points, the usual statement of the FV theorem would
be correct, so that the BFV-PI would always be vanishing, irrespective of the choice of gauge
fixing, clearly an undesirable situation since the correct quantum evolution operator could
then not be reproduced. This is explicitly illustrated by the fact that using the compactification
regularization and in the limit β → 0, the BFV-PI vanishes for the choices (17) and (84), and
this independently of the functions F(λ) or the parameter ρ. Indeed for these two choices, it
is precisely the parameter β which controls any contribution from the gauge fixing ‘fermion’
to the BFV-PI.

The actual and precise content of the FV theorem is already described in the introduction.
As mentioned there, its relevance is really within a nonperturbative context, while for ordinary
perturbation theory, there is no reason to doubt that the BFV-PI integral should be independent
of the gauge fixing fermion [10]. However, the subtle and difficult issues raised by the correct
statement of the Fradkin–Vilkovsky theorem are certainly to play an important role in the
understanding of nonperturbative and topological features of strongly interacting nonlinear
dynamics, such as that of Yang–Mills theories.

Faced with this situation, it thus appears that the admissibility of any given gauge fixing
procedure must be addressed on a case-by-case basis, once a dynamical system is considered.
In particular, this requires the knowledge of the modular space of gauge orbits of the system,
in general a difficult problem in itself. However, it should be recalled that any quantization
procedure of a constrained system not involving any gauge fixing procedure, such as that based
on the physical projector [13] which is set within precisely Dirac’s quantization approach only,
avoids having to address these difficult problems of identifying modular space and assessing
admissibility. Indeed, through the physical projector approach, an admissible covering of
modular space is always achieved implicitly [14], as illustrated for example in (11).
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